Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 16;294(5546):1534-7.
doi: 10.1126/science.1064082.

Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium

Affiliations

Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium

I Berman-Frank et al. Science. .

Abstract

In the modern ocean, a significant amount of nitrogen fixation is attributed to filamentous, nonheterocystous cyanobacteria of the genus Trichodesmium. In these organisms, nitrogen fixation is confined to the photoperiod and occurs simultaneously with oxygenic photosynthesis. Nitrogenase, the enzyme responsible for biological N2 fixation, is irreversibly inhibited by oxygen in vitro. How nitrogenase is protected from damage by photosynthetically produced O2 was once an enigma. Using fast repetition rate fluorometry and fluorescence kinetic microscopy, we show that there is both temporal and spatial segregation of N2 fixation and photosynthesis within the photoperiod. Linear photosynthetic electron transport protects nitrogenase by reducing photosynthetically evolved O2 in photosystem I (PSI). We postulate that in the early evolutionary phase of oxygenic photosynthesis, nitrogenase served as an electron acceptor for anaerobic heterotrophic metabolism and that PSI was favored by selection because it provided a micro-anaerobic environment for N2 fixation in cyanobacteria.

PubMed Disclaimer

Comment in

Publication types

MeSH terms

LinkOut - more resources