Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec 1;167(11):6518-24.
doi: 10.4049/jimmunol.167.11.6518.

Involvement of nicotinic acetylcholine receptors in suppression of antimicrobial activity and cytokine responses of alveolar macrophages to Legionella pneumophila infection by nicotine

Affiliations

Involvement of nicotinic acetylcholine receptors in suppression of antimicrobial activity and cytokine responses of alveolar macrophages to Legionella pneumophila infection by nicotine

K Matsunaga et al. J Immunol. .

Abstract

Although nicotine is thought to be one of the major immunomodulatory components of cigarette smoking, how nicotine alters the host defense of the lung and, in particular, immune responses of alveolar macrophages, which are critical effector cells in the lung defense to infection, is poorly understood. Nicotinic acetylcholine receptors (nAChRs) are the receptor for nicotine and may be involved in the modulation of macrophage function by nicotine. In this study, therefore, nicotine-induced suppression of antimicrobial activity and cytokine responses of alveolar macrophages mediated by nAChRs to Legionella pneumophila, a causative agent for pneumonia, were examined. The murine MH-S alveolar macrophage cell line cells expressed the messages for alpha4 and beta2 subunits of nAChRs, but not alpha7 subunits, determined by RT-PCR. The nicotine treatment of MH-S alveolar macrophages after infection with L. pneumophila significantly enhanced the replication of bacteria in the macrophages and selectively down-regulated the production of IL-6, IL-12, and TNF-alpha, but not IL-10, induced by infection. These effects were completely blocked by a nonselective antagonist, d-tubocurarine, for nAChRs, but not by a selective antagonist, alpha-bungarotoxin, for alpha7-nAChRs. Furthermore, the stimulation of nAChRs with another agonist, 1,1-dimethyl-4-phenylpiperazinium iodide, showed the same effects, which were blocked by the antagonist d-tubocurarine, on the bacterial replication and cytokine regulation with that of nicotine. Thus, the results revealed that nAChRs, the major exogenous ligands of which are nicotine, are involved in the regulation of macrophage immune function by nicotine and may contribute to the cigarette-induced risk factors for respiratory infections in smokers.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources