Monoamine oxidase-inhibition and MPTP-induced neurotoxicity in the non-human primate: comparison of rasagiline (TVP 1012) with selegiline
- PMID: 11716151
- DOI: 10.1007/s007020170018
Monoamine oxidase-inhibition and MPTP-induced neurotoxicity in the non-human primate: comparison of rasagiline (TVP 1012) with selegiline
Abstract
The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) has been shown to induce parkinsonism in man and non-human primates. Monoamine-oxidase B (MAO-B) has been reported to be implicated in both MPTP-induced parkinsonism and Parkinson's disease, since selegiline (L-deprenyl), an irreversible MAO-B inhibitor, prevents MPTP-induced neurotoxicity in numerous species including mice, goldfish and drosophyla. However, one disadvantage of this substance relates to its metabolism to (-)-methamphetamine and (-)-amphetamine. Rasagiline (R-(+)-N-propyl-1-aminoindane) is a novel irrevesible MAO-B-inhibitor, which is not metabolized to metamphetamine and/or amphetamine. The present study compared the effects of high doses of selegiline and rasagiline (10 mg/kg body weight s.c.) on MPTP-induced dopaminergic neurotoxicity in a non-human primate (Callithrix jacchus) model of PD. Groups of four monkeys were assigned to the following six experimental groups: Group I: Saline, Group II: Selegiline/Saline, Group III: Rasagiline/Saline, Group IV: MPTP/Saline, Group V: Rasagiline/MPTP, Group VI: Selegiline/MPTP. Daily treatment with MAO-B-inhibitors (either rasagiline or selegiline, 10 mg/kg body weight s.c.) was initiated four days prior to MPTP-exposure (MPTP-HCl, 2 mg/kg body weight subcutaneously, separated by an interval of 24 hours for a total of four days) and was continued until the end of the experiment, i.e. 7 days after the cessation of the MPTP-injections, when animals were sacrificed. MPTP-treatment caused distinct behavioural, histological, and biochemical alterations: 1. significant reduction of motor activity assessed by clinical rating and by computerized locomotor activity measurements; 2. substantial loss (approx. 40%) of dopaminergic (tyrosine-hydroxylase-positive) cells in the substantia nigra, pars compacta; and 3. putaminal dopamine depletion of 98% and its metabolites DOPAC (88%) and HVA (96%). Treatment with either rasagiline or selegiline markedly attenuated the neurotoxic effects of MPTP at the behavioural, histological, and at the biochemical levels. There were no significant differences between rasagiline/MPTP and selegiline/MPTP-treated animals in respect to signs of motor impairment, the number of dopaminergic cells in the substantia nigra, and striatal dopamine levels. As expected, both inhibitors decreased the metabolism of dopamine, leading to reduced levels of HVA and DOPAC (by >95% and 45% respectively). In conclusion, rasagiline and selegiline at the dosages employed equally protect against MPTP-toxicity in the common marmoset, suggesting that selegiline-derived metabolites are not important for the neuroprotective effects of high dose selegiline in the non-human MPTP-primate model in the experimental design employed. However, unexpectedly, high dose treatment with both MAO-inhibitors caused a decrease of the cell sizes of nigral tyrosine hydroxylase positive neurons. It remains to be determined, if this histological observation represents potential adverse effects of high dose treatment with monoamine oxidase inhibitors.
Similar articles
-
D-deprenyl protects nigrostriatal neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurotoxicity.Synapse. 2003 Oct;50(1):7-13. doi: 10.1002/syn.10239. Synapse. 2003. PMID: 12872288
-
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in non-human primates is antagonized by pretreatment with nimodipine at the nigral, but not at the striatal level.Brain Res. 1996 Nov 25;741(1-2):185-96. doi: 10.1016/s0006-8993(96)00917-1. Brain Res. 1996. PMID: 9001722
-
Effects of monoamine oxidase inhibitors on the diethyldithiocarbamate-induced enhancement of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in C57BL/6 mice.J Neural Transm (Vienna). 2003 Aug;110(8):859-69. doi: 10.1007/s00702-003-0003-0. J Neural Transm (Vienna). 2003. PMID: 12898342
-
The actions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in animals as a model of Parkinson's disease.J Neural Transm Suppl. 1986;20:11-39. J Neural Transm Suppl. 1986. PMID: 3091760 Review.
-
Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases.Mech Ageing Dev. 2005 Feb;126(2):317-26. doi: 10.1016/j.mad.2004.08.023. Mech Ageing Dev. 2005. PMID: 15621213 Review.
Cited by
-
Brain catecholamine alterations and pathological features with aging in Parkinson disease model rat induced by Japanese encephalitis virus.Neurochem Res. 2006 Dec;31(12):1451-5. doi: 10.1007/s11064-006-9197-5. Epub 2006 Nov 14. Neurochem Res. 2006. PMID: 17103330
-
Current Drugs and Potential Future Neuroprotective Compounds for Parkinson's Disease.Curr Neuropharmacol. 2019;17(3):295-306. doi: 10.2174/1570159X17666181127125704. Curr Neuropharmacol. 2019. PMID: 30479218 Free PMC article. Review.
-
Strategies for the protection of dopaminergic neurons against neurotoxicity.Neurotox Res. 2000;2(2-3):99-114. doi: 10.1007/BF03033788. Neurotox Res. 2000. PMID: 16787835
-
Rasagiline - a novel MAO B inhibitor in Parkinson's disease therapy.Ther Clin Risk Manag. 2007 Jun;3(3):467-74. Ther Clin Risk Manag. 2007. PMID: 18488080 Free PMC article.
-
Monoamine Oxidase B Total Distribution Volume in the Prefrontal Cortex of Major Depressive Disorder: An [11C]SL25.1188 Positron Emission Tomography Study.JAMA Psychiatry. 2019 Jun 1;76(6):634-641. doi: 10.1001/jamapsychiatry.2019.0044. JAMA Psychiatry. 2019. PMID: 30840042 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous