Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 30;289(2):434-43.
doi: 10.1006/bbrc.2001.6017.

Changes in ribosome function induced by protein kinase associated with ribosomes of Streptomyces collinus producing kirromycin

Affiliations

Changes in ribosome function induced by protein kinase associated with ribosomes of Streptomyces collinus producing kirromycin

K Mikulík et al. Biochem Biophys Res Commun. .

Abstract

Protein kinase associated with ribosomes of streptomycetes phosphorylates 11 ribosomal proteins. Phosphorylation activity of protein kinase reaches its maximum at the end of exponential phase of growth. When (32)P-labeled cells from the end of exponential phase of growth were transferred to a fresh medium, after 2 h of cultivation ribosomal proteins lost more than 90% of (32)P and rate of polypeptide synthesis increases twice. Protein kinase cross-reacting with antibody raised against protein kinase C was partially purified from 1 M NH(4)Cl wash of ribosomes and used to phosphorylation of ribosomes. Phosphorylation of 50S subunits (L2, L3, L7, L16, L21, L23, and L27) had no effect on the integrity of subunits but affects association with 30 to 70S monosomes. In vitro system derived from ribosomal subunits was used to examine the activity of phosphorylated 50S at poly(U) translation. Replacement unphosphorylated 50S with 50S possessed of phosphorylated r-proteins leads to the reduction of polypeptide synthesis of about 52%. The binding of N-Ac[(14)C]Phe-tRNA to A-site of phosphorylated ribosomes is not affected but the rate of peptidyl transferase is more than twice lower than that in unphosphorylated ribosomes. These results provide evidence that phosphorylation of ribosomal proteins is involved in mechanisms regulating the translational system of Streptomyces collinus.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources