Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Oct-Nov;56(3-4):191-201.
doi: 10.1016/s0361-9230(01)00651-7.

Triplet repeats, RNA secondary structure and toxic gain-of-function models for pathogenesis

Affiliations
Review

Triplet repeats, RNA secondary structure and toxic gain-of-function models for pathogenesis

R Galvão et al. Brain Res Bull. 2001 Oct-Nov.

Abstract

Ten years after the discovery of human diseases caused by trinucleotide repeat expansions, searching for mechanistic links between gene mutation and pathological phenotype remains a fundamental and unsolved issue. Evidence accumulated so far indicates that the pathogenesis of repeat disorders is complex and multi-factorial. Diseases caused by CAG expansions coding for polyglutamine tracts have been extensively studied, and in most cases a toxic gain-of-function of the mutant protein was demonstrated. Most recently, tracking the effects of repeats along the pathway of gene expression is providing additional clues to understand how a triplet repeat expansion can cause disease. Expanded repeats form DNA secondary structures that confer genetic instability, and most likely contribute to alter the local chromatin configuration leading to transcriptional silencing. At the level of RNA, the expanded repeat may either interfere with processing of the primary transcript, resulting in deficit of the corresponding protein, or interact with RNA-binding proteins altering their normal activity. The latter mechanism, termed RNA gain-of-function, has no precedents in human genetics. Recent evidence suggests that expanded RNAs and associated RNA-binding proteins are potential contributors to the pathogenesis of several triplet repeat diseases.

PubMed Disclaimer

Publication types

LinkOut - more resources