Combined genomic and antisense analysis reveals that the transcription factor Erg is implicated in endothelial cell differentiation
- PMID: 11719371
- DOI: 10.1182/blood.v98.12.3332
Combined genomic and antisense analysis reveals that the transcription factor Erg is implicated in endothelial cell differentiation
Abstract
It has recently been shown that the transcription factor Erg, an Ets family member, drives constitutive expression of the intercellular adhesion molecule 2 (ICAM-2) in human umbilical vein endothelial cells (HUVECs) and that its expression is down-regulated by the pleiotropic cytokine tumor necrosis factor alpha (TNF-alpha). To identify other Erg target genes and to define its function in the endothelium, a combined approach of antisense oligonucleotides (GeneBloc) and differential gene expression was used. Treatment of HUVECs with Erg-specific GeneBloc for 24, 48, and 72 hours suppressed Erg mRNA and protein levels at all time points. Total RNA extracted from HUVECs treated with Erg-specific or control GeneBloc was analyzed for differences in gene expression using high-density, sequence-verified cDNA arrays containing 482 relevant genes. Inhibition of Erg expression resulted in decreased expression of ICAM-2, as predicted. Four more genes decreased in Erg-deficient HUVECs were the extracellular matrix proteins SPARC and thrombospondin, the adhesive glycoprotein von Willebrand factor, and the small GTPase RhoA. Each of these molecules has been directly or indirectly linked to angiogenesis because of its role in vascular remodeling, adhesion, or shape change. Therefore, the role of Erg in vascular remodeling was tested in an in vitro model, and the results showed that HUVECs treated with Erg GeneBloc had a decreased ability to form tubulelike structures when grown on Matrigel. These results suggest that Erg may be a mediator of the TNF-alpha effects on angiogenesis in vivo.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous

