Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 1;73(21):5157-67.
doi: 10.1021/ac010380m.

Fourier transform infrared imaging: theory and practice

Affiliations

Fourier transform infrared imaging: theory and practice

R Bhargava et al. Anal Chem. .

Abstract

The signal-to-noise ratio (SNR) of spectral data obtained from a microimaging Fourier transform infrared (FT-IR) spectrometer assembly, employing a step-scan interferometer and focal plane array detector, is analyzed. Based on the methodology of data collection, a theoretical description for the performance characteristics is proposed and quantitative effects of the acquisition parameters on the SNR are explained theoretically and compared to experiment. To obtain the best strategy for achieving either the highest SNR in a given time interval or for attaining a given SNR in the shortest time period, the concept of characteristic plots is introduced. The theoretical analysis is extended to FT-IR microimaging employing continuous scan interferometers in which the advantages of fast image collection are enumerated, while SNR limitations arising from mirror positioning errors are discussed. A step-scan method is suggested for faster data collection in which an optimal detector response and SNR benefits are retained. Theoretically obtained SNRs based upon the expressions proposed in this paper predict experimentally determined values quite well and can be used to obtain an understanding of the required developments for improved performance. Finally, SNRs for both microimaging systems and conventional microspectroscopic instrumentation are compared.

PubMed Disclaimer

LinkOut - more resources