Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 30;66(24):7967-73.
doi: 10.1021/jo001720r.

Conformation and configuration of tertiary amines via GIAO-derived (13)C NMR chemical shifts and a multiple independent variable regression analysis

Affiliations

Conformation and configuration of tertiary amines via GIAO-derived (13)C NMR chemical shifts and a multiple independent variable regression analysis

A B Sebag et al. J Org Chem. .

Abstract

The (13)C chemical shifts of six tertiary amines of unambiguous conformational structure are compared to predicted (13)C NMR chemical shifts obtained via empirically scaled GIAO shieldings for geometries from MM3 molecular mechanics calculations. An average deviation, absolute value of Deltadelta(av), of 0.8 ppm and a maximum deviation, absolute value of Deltadelta(max), of 2.8 ppm between predicted and experimental (13)C shifts of the six tertiary amines of unambiguous structure are found. In several cases of tertiary amines subject to rapid exchange, where experimental (13)C shifts at room temperature are weighted averages of multiple conformers, a comparison of calculated (13)C shifts of all reasonable MM3 predicted conformers with experimental (13)C shifts via a multiple independent variable regression analysis provides an efficient method of determining the major and minor conformers. The examples presented are 2-methyl-2-azabicyclo[2.2.1]heptane and 1,6-diazabicyclo[4.3.1]decane, which each have two expected contributing structures, and 2-(diethylamino)propane and 1,8-diazabicyclo[6.3.1]dodecane, where ten and seven low-energy conformers, respectively, are predicted by MM3 calculations.

PubMed Disclaimer

LinkOut - more resources