Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes
- PMID: 11722900
- PMCID: PMC93337
- DOI: 10.1128/AEM.67.12.5512-5519.2001
Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes
Abstract
The beta-xylosidase-encoding xlnD gene of Aspergillus niger 90196 was amplified by the PCR technique from first-strand cDNA synthesized on mRNA isolated from the fungus. The nucleotide sequence of the cDNA fragment was verified to contain a 2,412-bp open reading frame that encodes a 804-amino-acid propeptide. The 778-amino-acid mature protein, with a putative molecular mass of 85.1 kDa, was fused in frame with the Saccharomyces cerevisiae mating factor alpha1 signal peptide (MFalpha1(s)) to ensure correct posttranslational processing in yeast. The fusion protein was designated Xlo2. The recombinant beta-xylosidase showed optimum activity at 60 degrees C and pH 3.2 and optimum stability at 50 degrees C. The K(i(app)) value for D-xylose and xylobiose for the recombinant beta-xylosidase was determined to be 8.33 and 6.41 mM, respectively. The XLO2 fusion gene and the XYN2 beta-xylanase gene from Trichoderma reesei, located on URA3-based multicopy shuttle vectors, were successfully expressed and coexpressed in the yeast Saccharomyces cerevisiae under the control of the alcohol dehydrogenase II gene (ADH2) promoter and terminator. These recombinant S. cerevisiae strains produced 1,577 nkat/ml of beta-xylanase activity when expressing only the beta-xylanase and 860 nkat/ml when coexpressing the beta-xylanase with the beta-xylosidase. The maximum beta-xylosidase activity was 5.3 nkat/ml when expressed on its own and 3.5 nkat/ml when coexpressed with the beta-xylanase. Coproduction of the beta-xylanase and beta-xylosidase enabled S. cerevisiae to degrade birchwood xylan to D-xylose.
Figures





Similar articles
-
Coexpression of the Bacillus pumilus beta-xylosidase (xynB) gene with the Trichoderma reesei beta xylanase 2 (xyn2) gene in the yeast Saccharomyces cerevisiae.Appl Microbiol Biotechnol. 2000 Aug;54(2):195-200. doi: 10.1007/s002530000372. Appl Microbiol Biotechnol. 2000. PMID: 10968632
-
Expression of a Trichoderma reesei beta-xylanase gene (XYN2) in Saccharomyces cerevisiae.Appl Environ Microbiol. 1996 Mar;62(3):1036-44. doi: 10.1128/aem.62.3.1036-1044.1996. Appl Environ Microbiol. 1996. PMID: 8975597 Free PMC article.
-
Sequencing and expression of the xylanase gene 2 from Trichoderma reesei Rut C-30 and characterization of the recombinant enzyme and its activity on xylan.J Mol Microbiol Biotechnol. 2009;17(3):101-9. doi: 10.1159/000226590. Epub 2009 Jun 26. J Mol Microbiol Biotechnol. 2009. PMID: 19556747
-
Microbial exo-xylanases: a mini review.Appl Biochem Biotechnol. 2014 Sep;174(1):81-92. doi: 10.1007/s12010-014-1042-8. Epub 2014 Jul 31. Appl Biochem Biotechnol. 2014. PMID: 25080375 Review.
-
Xylanases: from biology to biotechnology.Biotechnol Genet Eng Rev. 1996;13:101-31. doi: 10.1080/02648725.1996.10647925. Biotechnol Genet Eng Rev. 1996. PMID: 8948110 Review.
Cited by
-
Raw starch conversion by Saccharomyces cerevisiae expressing Aspergillus tubingensis amylases.Biotechnol Biofuels. 2013 Nov 29;6(1):167. doi: 10.1186/1754-6834-6-167. Biotechnol Biofuels. 2013. PMID: 24286270 Free PMC article.
-
Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation.FEMS Yeast Res. 2017 Aug 1;17(5):fox044. doi: 10.1093/femsyr/fox044. FEMS Yeast Res. 2017. PMID: 28899031 Free PMC article. Review.
-
Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome.Appl Environ Microbiol. 2012 Jun;78(11):3837-45. doi: 10.1128/AEM.07679-11. Epub 2012 Mar 23. Appl Environ Microbiol. 2012. PMID: 22447594 Free PMC article.
-
Identifying promoters to enhance heterologous gene expression in recombinant Saccharomyces cerevisiae strains cultivated on non-native substrates.Appl Microbiol Biotechnol. 2025 Jul 26;109(1):173. doi: 10.1007/s00253-025-13563-6. Appl Microbiol Biotechnol. 2025. PMID: 40715790 Free PMC article.
-
Purification and characterization of cellulase-free low molecular weight endo β-1,4 xylanase from an alkalophilic Cellulosimicrobium cellulans CKMX1 isolated from mushroom compost.World J Microbiol Biotechnol. 2014 Oct;30(10):2597-608. doi: 10.1007/s11274-014-1683-3. Epub 2014 Jun 8. World J Microbiol Biotechnol. 2014. PMID: 24908422
References
-
- Aristidou A, Penttilä M. Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol. 2000;11:187–198. - PubMed
-
- Bailey M J, Biely P, Poutanen K. Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol. 1992;23:257–270.
-
- Beauchemin K A, Rode L M, Sewalt V J H. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Can J Anim Sci. 1995;75:641–644.
-
- Biely P. Microbial xylanolytic systems. Trends Biotechnol. 1985;3:286–290.
-
- Biely P, Hirsch J, la Grange D C, van Zyl W H, Prior B A. A chromogenic substrate for a β-xylosidase-coupled assay of α-glucuronidase. Anal Biochem. 2000;286:289–294. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases