Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2001 Dec 4;40(48):14635-44.
doi: 10.1021/bi0156714.

Mass spectrometric analysis reveals an increase in plasma membrane polyunsaturated phospholipid species upon cellular cholesterol loading

Affiliations
Comparative Study

Mass spectrometric analysis reveals an increase in plasma membrane polyunsaturated phospholipid species upon cellular cholesterol loading

T S Blom et al. Biochemistry. .

Abstract

Here we used electrospray ionization mass spectrometry for quantitative determination of lipid molecular species in human fibroblasts and their plasma membrane incorporated into enveloped viruses. Both influenza virus selecting ordered domains and vesicular stomatitis virus (VSV) depleted of such domains [Scheiffele, P., et al. (1999) J. Biol. Chem. 274, 2038-2044] were analyzed. The major difference between influenza and VSV was found to be a marked enrichment of glycosphingolipids in the former. The effect of chronic cholesterol loading on viral lipid composition was studied in Niemann-Pick type C (NPC) fibroblasts. Both NPC-derived influenza and VSV virions contained increased amounts of cholesterol. Furthermore, polyunsaturated phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine were enriched in NPC-derived virions at the expense of the monounsaturated ones. When normal fibroblasts were acutely loaded with cholesterol using cyclodextrin complexes, an adjustment toward increasingly unsaturated phospholipid species was observed, most clearly for phosphatidylcholine and sphingomyelin. Our results provide evidence that (1) glycosphingolipids are enriched in domains through which influenza virus buds, (2) chronic cholesterol accumulation increases the cholesterol content of both glycosphingolipid-enriched and intervening plasma membrane domains, and (3) an increase in membrane cholesterol content is accompanied by an increased level of polyunsaturated species of the major membrane phospholipids. We suggest that remodeling of phospholipids toward higher unsaturation may serve as both an acute and a long-term adaptive mechanism in human cellular membranes against cholesterol excess.

PubMed Disclaimer

Publication types

MeSH terms