The lag structure between particulate air pollution and respiratory and cardiovascular deaths in 10 US cities
- PMID: 11725331
- DOI: 10.1097/00043764-200111000-00001
The lag structure between particulate air pollution and respiratory and cardiovascular deaths in 10 US cities
Abstract
To assess differences in the lag structure pattern between particulate matter < 10 microns/100 microns in diameter (PM10) and cause-specific mortality, we performed a time-series analysis in 10 US cities using generalized additive Poisson regressions in each city; nonparametric smooth functions were used to control for long time trend, weather, and day of the week. The PM10 effect was estimated based on its daily mean, 2-day moving average, and the cumulative 7-day effect by means of an unconstrained distributed lag model. A 10-microgram/m3 increase in the 7-day mean of PM10 was associated with increases in deaths due to pneumonia (2.7%, 95% confidence interval [CI]: 1.5, 3.9), chronic obstructive pulmonary disease (1.7%, 95% CI: 0.1, 3.3), and all cardiovascular diseases (1.0%, 95% CI: 0.6, 1.4). A 10-microgram/m3 increase in the 2-day mean of PM10 was associated with a 0.7% (95% CI: 0.3, 1.1) increase in deaths from myocardial infarction. When the distributed lag was assessed, two different patterns could be observed: respiratory deaths were more affected by air pollution levels on the previous days, whereas cardiovascular deaths were more affected by same-day pollution. These results contribute to the overall efforts so far in understanding how exposure to air pollution promotes adverse health effects.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
