Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 23;508(3):413-7.
doi: 10.1016/s0014-5793(01)03061-7.

Transformation of acridone synthase to chalcone synthase

Affiliations
Free article

Transformation of acridone synthase to chalcone synthase

R Lukacin et al. FEBS Lett. .
Free article

Erratum in

  • FEBS Lett 2002 Jan 2;510(1-2):108

Abstract

Acridone synthase (ACS) and chalcone synthase (CHS) catalyse the pivotal reactions in the formation of acridone alkaloids or flavonoids. While acridone alkaloids are confined almost exclusively to the Rutaceae, flavonoids occur abundantly in all seed-bearing plants. ACSs and CHSs had been cloned from Ruta graveolens and shown to be closely related polyketide synthases which use N-methylanthraniloyl-CoA and 4-coumaroyl-CoA, respectively, as the starter substrate to produce the acridone or naringenin chalcone. As proposed for the related 2-pyrone synthase from Gerbera, the differential substrate specificities of ACS and CHS might be attributed to the relative volume of the active site cavities. The primary sequences as well as the immunological cross reactivities and molecular modeling studies suggested an almost identical spatial structure for ACS and CHS. Based on the Ruta ACS2 model the residues Ser132, Ala133 and Val265 were assumed to play a critical role in substrate specificity. Exchange of a single amino acid (Val265Phe) reduced the catalytic activity by about 75% but grossly shifted the specificity towards CHS activity, and site-directed mutagenesis replacing all three residues by the corresponding amino acids present in CHS (Ser132Thr, Ala133Ser and Val265Phe) fully transformed the enzyme to a functional CHS with comparatively marginal ACS activity. The results suggested that ACS divergently has evolved from CHS by very few amino acid exchanges, and it remains to be established why this route of functional diversity has developed in the Rutaceae only.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources