Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 23;508(3):463-9.
doi: 10.1016/s0014-5793(01)03114-3.

K(+) channel profile and electrical properties of Arabidopsis root hairs

Affiliations
Free article

K(+) channel profile and electrical properties of Arabidopsis root hairs

N Ivashikina et al. FEBS Lett. .
Free article

Abstract

Ion channels and solute transporters in the plasma membrane of root hairs are proposed to control nutrient uptake, osmoregulation and polar growth. Here we analyzed the molecular components of potassium transport in Arabidopsis root hairs by combining K(+)-selective electrodes, reverse transcription-PCR, and patch-clamp measurements. The two inward rectifiers AKT1 and ATKC1 as well as the outward rectifier GORK dominated the root hair K(+) channel pool. Root hairs of AKT1 and ATKC1 loss-of-function plants completely lack the K(+) uptake channel or exhibited altered properties, respectively. Upon oligochitin-elicitor treatment of root hairs, transient changes in K(+) fluxes and membrane polarization were recorded in wild-type plants, while akt1-1 root hairs showed a reduced amplitude and pronounced delay in the potassium re-uptake process. This indicates that AKT1 and ATKC1 represent essential alpha-subunits of the inward rectifier. Green fluorescent protein (GFP) fluorescence following ballistic bombardment with GORK promoter-GFP constructs as well as analysis of promoter-GUS lines identified this K(+) outward rectifier as a novel ion channel expressed in root hairs. Based on the expression profile and the electrical properties of the root hair plasma membrane we conclude that AKT1-, ATKC- and GORK-mediated potassium transport is essential for osmoregulation and repolarization of the membrane potential in response to elicitors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources