Metabolic engineering in yeast demonstrates that S-adenosylmethionine controls flux through the methylenetetrahydrofolate reductase reaction in vivo
- PMID: 11729203
- DOI: 10.1074/jbc.M110651200
Metabolic engineering in yeast demonstrates that S-adenosylmethionine controls flux through the methylenetetrahydrofolate reductase reaction in vivo
Erratum in
- J Biol Chem 2002 Sep 27;277(39):36904
Abstract
One-carbon flux into methionine and S-adenosylmethionine (AdoMet) is thought to be controlled at the methylenetetrahydrofolate reductase (MTHFR) step. Mammalian MTHFRs are inhibited by AdoMet in vitro, and it has been proposed that methyl group biogenesis is regulated in vivo by this feedback loop. In this work, we used metabolic engineering in the yeast Saccharomyces cerevisiae to test this hypothesis. Like mammalian MTHFRs, the yeast MTHFR encoded by the MET13 gene is NADPH-dependent and is inhibited by AdoMet in vitro. This contrasts with plant MTHFRs, which are NADH-dependent and AdoMet-insensitive. To manipulate flux through the MTHFR reaction in yeast, the chromosomal copy of MET13 was replaced by an Arabidopsis MTHFR cDNA (AtMTHFR-1) or by a chimeric sequence (Chimera-1) comprising the yeast N-terminal domain and the AtMTHFR-1 C-terminal domain. Chimera-1 used both NADH and NADPH and was insensitive to AdoMet, supporting the view that the C-terminal domain is responsible for AdoMet inhibition. Engineered yeast expressing Chimera-1 accumulated 140-fold more AdoMet and 7-fold more methionine than did the wild-type and grew normally. Yeast expressing AtMTHFR-1 accumulated 8-fold more AdoMet. This is the first in vivo evidence that the AdoMet sensitivity and pyridine nucleotide preference of MTHFR control methylneogenesis. (13)C labeling data indicated that glycine cleavage becomes a more prominent source of one-carbon units when Chimera-1 is expressed. Possibly related to this shift in one-carbon fluxes, total folate levels are doubled in yeast cells expressing Chimera-1.
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
