Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec;86(6):2973-85.
doi: 10.1152/jn.2001.86.6.2973.

Properties of excitatory synaptic connections mediated by the corpus callosum in the developing rat neocortex

Affiliations
Free article

Properties of excitatory synaptic connections mediated by the corpus callosum in the developing rat neocortex

S S Kumar et al. J Neurophysiol. 2001 Dec.
Free article

Abstract

Despite the major role of excitatory cortico-cortical connections in mediating neocortical activities, little is known about these synapses at the cellular level. Here we have characterized the synaptic properties of long-range excitatory-to-excitatory contacts between visually identified layer V pyramidal neurons of agranular frontal cortex in callosally connected neocortical slices from postnatal day 13 to 21 (P13-21) rats. Midline stimulation of the corpus callosum with a minimal stimulation paradigm evoked inward excitatory postsynaptic currents (EPSCs) with an averaged peak amplitude of 56.5 +/- 5 pA under conditions of whole cell voltage clamp at -70 mV. EPSCs had fixed latencies from stimulus onset and could follow stimulus trains (1-20 Hz) without changes in kinetic properties. Bath application of 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) abolished these responses completely, indicating that they were mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs). Evoked responses were isolated in picrotoxin to yield purely excitatory PSCs, and a low concentration of NBQX (0.1 microM) was used to partially block AMPARs and prevent epileptiform activity in the tissue. Depolarization of the recorded pyramidal neurons revealed a late, slowly decaying component that reversed at approximately 0 mV and was blocked by D-2-amino-5-phosphonovaleric acid. Thus AMPA and N-methyl-D-aspartate receptors (NMDARs) coexist at callosal synapses and are likely to be activated monosynaptically. The peak amplitudes and decay time constants for EPSCs evoked using minimal stimulation (+/-40 mV) were similar to spontaneously occurring sEPSCs. Typical conductances associated with AMPA and NMDAR-mediated components, deduced from their respective current-voltage (I-V) relationships, were 525 +/- 168 and 966 +/- 281 pS, respectively. AMPAR-mediated responses showed age-dependent changes in the rectification properties of their I-V relationships. While I-Vs from animals >P15 were linear, those in the younger (<P16) age group were inwardly rectifying. Although Ca2+ permeability in AMPARs can be correlated with inward rectification, outside-out somatic patches from younger animals were characterized by Ca2+-impermeable receptors, suggesting that somatic receptors might be functionally different from those located at synapses. While the biophysical properties of AMPAR components of callosally-evoked EPSCs were similar to those evoked by stimulation of local excitatory connections, the NMDA component displayed input-specific differences. NMDAR-mediated responses for local inputs were activated at more hyperpolarized holding potentials in contrast with those evoked by callosal stimulation. Paired stimuli used to assay presynaptic release properties showed paired-pulse depression (PPD) in animals <P16, which converted to facilitation (PPF) in older animals, suggesting a developmental transition from low probability of transmitter release to high P(r) at these synapses and/or alterations in the properties of the underlying postsynaptic receptors. Physiologic properties of neocortical e-e connections are thus input specific and subject to developmental changes in their postsynaptic receptors.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources