Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec 7;314(4):671-81.
doi: 10.1006/jmbi.2001.5185.

Dimer stabilization upon activation of the transcriptional antiterminator LicT

Affiliations

Dimer stabilization upon activation of the transcriptional antiterminator LicT

N Declerck et al. J Mol Biol. .

Abstract

LicT belongs to the BglG/SacY family of transcriptional antiterminators that induce the expression of sugar metabolizing operons in Gram positive and Gram negative bacteria. These proteins contain a N-terminal RNA-binding domain and a regulatory domain called PRD which is phosphorylated on conserved histidine residues by components of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). Although it is now well established that phosphorylation of PRD-containing transcriptional regulators tunes their functional response, the molecular and structural basis of the regulation mechanism remain largely unknown.A constitutively active LicT variant has been obtained by introducing aspartic acid in replacement of His207 and His269, the two phosphorylatable residues of the PRD2 regulatory sub-domain. Here, the functional and structural consequences of these activating mutations have been evaluated in vitro using various techniques including surface plasmon resonance, limited proteolysis, analytical centrifugation and X-ray scattering. Comparison with the native, unphosphorylated form shows that the activating mutations enhance the RNA-binding activity and induce tertiary and quaternary structural changes. Both mutant and native LicT form dimers in solution but the native dimer exhibits a less stable and more open conformation than the activated mutant form. Examination of the recently determined crystal structure of mutant LicT regulatory domain suggests that dimer stabilization is accomplished through salt-bridge formation at the PRD2:PRD2 interface, resulting in domain motion and dimer closure propagating the stabilizing effect from the protein C-terminal end to the N-terminal effector domain. These results suggest that LicT activation arises from a conformational switch inducing long range rearrangement of the dimer interaction surface, rather than from an oligomerization switch converting an inactive monomer into an active dimer.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources