Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Oct;38(4 Suppl 12):35-8.
doi: 10.1053/shem.2001.29505.

Tissue factor in experimental acute lung injury

Affiliations
Review

Tissue factor in experimental acute lung injury

K E Welty-Wolf et al. Semin Hematol. 2001 Oct.

Abstract

Acute lung injury (ALI) is characterized by fibrin deposition in the tissue and vascular spaces. Coagulation is activated after exposure to endotoxin or bacteria, and a procoagulant environment rapidly develops in the vascular, interstitial, and alveolar spaces of the lung. These changes are tissue factor (TF)-dependent and associated with increases in inflammatory cytokines. Procoagulant changes also occur in the lungs of patients with the acute respiratory distress syndrome (ARDS), suggesting that epithelial inflammation activates the extrinsic pathway. Many inflammatory mediators have specific effects on coagulation; however, the role of TF in regulation of pulmonary inflammatory responses is less clear. Here we report initial data on blockade of TF-initiated coagulation in baboons with Escherichia coli sepsis-induced ALI, using active site-inactivated FVIIa (FVIIai ASIS). Treatment with FVIIai prevented plasma fibrinogen depletion and attenuated fibrin deposition in the tissues. The drug also decreased systemic cytokine responses and inflammatory changes in the lung, including neutrophil infiltration, and decreased edema. Coagulation blockade with FVIIai improved lung function by preserving gas exchange and compliance, decreased pulmonary hypertension, and enhanced renal function. These results show that TF-FVIIa complex is an important regulatory site for the pathologic response of the lung to sepsis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources