Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec;52(3):477-86.
doi: 10.1016/s0008-6363(01)00407-2.

Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase

Affiliations

Differential NADPH- versus NADH-dependent superoxide production by phagocyte-type endothelial cell NADPH oxidase

J M Li et al. Cardiovasc Res. 2001 Dec.

Abstract

Objective: A poorly characterized phagocyte-type NADPH oxidase, which is reportedly NADH- rather than NADPH-dependent, is a major source of endothelial reactive oxygen species (ROS) production. We investigated the molecular nature of this oxidase and the characteristics of NADPH- versus NADH-dependent O(2)(-) production in endothelial cells of three different species.

Methods: NADPH oxidase expression in human, bovine and porcine endothelial cells was studied by RT-PCR and immunoblotting. O(2)(-) production was assessed by lucigenin chemiluminescence and cytochrome c reduction assay.

Results: The NADPH oxidase subunits p47-phox, p67-phox, p22-phox, gp91-phox, and rac1 were all expressed in endothelial cells. NADPH-dependent O(2)(-) production by endothelial cells was readily detectable using lucigenin 5 micromol/l, was minimally affected by increasing lucigenin dose up to 400 micromol/l, and was abolished by diphenyleneiodonium. In contrast, NADH-dependent O(2)(-) production was only detectable with lucigenin > or =50 micromol/l, increased substantially with higher lucigenin dose, and was unaffected by diphenyleneiodonium. Predominance of NADPH- over NADH-dependent O(2)(-) production was confirmed in cell homogenates and by cytochrome c reduction assay.

Conclusion: Endothelial cells express all components of a phagocyte-type NADPH oxidase. Like the neutrophil enzyme, the endothelial oxidase is preferentially NADPH- rather than NADH-dependent. NADH-dependent O(2)(-) production appears to be an artefact related to the use of lucigenin doses > or =50 micromol/l.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources