Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec;38(7):2028-34.
doi: 10.1016/s0735-1097(01)01651-5.

Noninvasive single-beat determination of left ventricular end-systolic elastance in humans

Affiliations
Free article

Noninvasive single-beat determination of left ventricular end-systolic elastance in humans

C H Chen et al. J Am Coll Cardiol. 2001 Dec.
Free article

Abstract

Objectives: The goal of this study was to develop and validate a method to estimate left ventricular end-systolic elastance (E(es)) in humans from noninvasive single-beat parameters.

Background: Left ventricular end-systolic elastance is a major determinant of cardiac systolic function and ventricular-arterial interaction. However, its use in heart failure assessment and management is limited by lack of a simple means to measure it noninvasively. This study presents a new noninvasive method and validates it against invasively measured E(es).

Methods: Left ventricular end-systolic elastance was calculated by a modified single-beat method employing systolic (P(s)) and diastolic (P(d)) arm-cuff pressures, echo-Doppler stroke volume (SV), echo-derived ejection fraction (EF) and an estimated normalized ventricular elastance at arterial end-diastole (E(Nd)): E(es(sb)) = [P(d) - (E(Nd(est)) x P(s) x 0.9)[/(E(Nd(est)) x SV). The E(Nd) was estimated from a group-averaged value adjusted for individual contractile/loading effects; E(es(sb)) estimates were compared with invasively measured values in 43 patients with varying cardiovascular disorders, with additional data recorded after inotropic stimulation (n = 18, dobutamine 5 to 10 microg/kg per min). Investigators performing noninvasive analysis were blinded to the invasive results.

Results: Combined baseline and dobutamine-stimulated E(es) ranged 0.4 to 8.4 mm Hg/ml and was well predicted by E(es(sb)) over the full range: E(es) = 0.86 x E(es(sb)) + 0.40 (r = 0.91, SEE = 0.64, p < 0.00001, n = 72). Absolute change in E(es(sb)) before and after dobutamine also correlated well with invasive measures: E(es(sb)): DeltaE(es) = 0.86 x DeltaE(es(sb)) + 0.67 (r = 0.88, p < 0.00001). Repeated measures of E(es(sb)) over two months in a separate group of patients (n = 7) yielded a coefficient of variation of 20.3 +/- 6%.

Conclusions: The E(es) can be reliably estimated from simple noninvasive measurements. This approach should broaden the clinical applicability of this useful parameter for assessing systolic function, therapeutic response and ventricular-arterial interaction.

PubMed Disclaimer

Publication types