Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec;147(Pt 12):3377-86.
doi: 10.1099/00221287-147-12-3377.

Transcriptional regulation of 3,4-dihydroxy-2-butanone 4-phosphate synthase

Affiliations
Free article

Transcriptional regulation of 3,4-dihydroxy-2-butanone 4-phosphate synthase

T Schlösser et al. Microbiology (Reading). 2001 Dec.
Free article

Abstract

The filamentous hemiascomycete Ashbya gossypii is a strong riboflavin overproducer. A striking but as yet uninvestigated phenomenon is the fact that the overproduction of this vitamin starts when growth rate declines, which means that most of the riboflavin is produced in the stationary phase, the so-called production phase. The specific activity of 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthase, the first enzyme in the biosynthetic pathway for riboflavin, was determined during cultivation and an increase during the production phase was found. Furthermore, an increase of RIB3 mRNA, encoding DHBP synthase, was observed by competitive RT-PCR in the production phase. The mRNAs of two housekeeping genes, ACT1 (encoding actin) and TEF (encoding translation elongation factor-1 alpha), served as standards in the RT-PCR. Reporter studies with a RIB3 promoter-lacZ fusion showed an increase of beta-galactosidase specific activity in the production phase. This investigation verified that the increase of RIB3 mRNA in the production phase is caused by an induction of promoter activity. These data suggest that the time course of riboflavin overproduction of A. gossypii is correlated with a transcriptional regulation of the DHBP synthase.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources