Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan;282(1):C49-58.
doi: 10.1152/ajpcell.00267.2001.

Involvement of multiple kinase pathways in stimulation of gene transcription by hypertonicity

Affiliations
Free article

Involvement of multiple kinase pathways in stimulation of gene transcription by hypertonicity

Ohnn Nahm et al. Am J Physiol Cell Physiol. 2002 Jan.
Free article

Abstract

Osmolality of the mammalian renal medulla is high because of the operation of the urinary concentrating mechanism. To understand molecular events during the early phase of cellular adaptation to hypertonicity, we performed comprehensive searches for genes induced in response to hypertonicity using a cell line (mIMCD3) derived from the inner medullary collecting duct of mouse kidney. PCR-based subtractive hybridization of cDNA pools and cDNA microarray analysis were used. We report 12 genes whose mRNA expression is significantly increased within 4 h after exposure to hypertonicity. The increase in mRNA expression was the result of increased transcription. Many are either stress response genes or growth regulatory genes, supporting the notion that hypertonicity evokes the stress response and growth regulation in cells. Experiments using inhibitors revealed that mitogen-activated protein kinases were commonly involved in signaling for the induction of genes by hypertonicity. Tyrosine kinases and phosphatidylinositol 3-kinase also play a significant role. Signaling pathways for stimulation of transcription appeared quite diverse in that each gene was sensitive to different combinations of inhibitors.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources