Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Dec;226(11):978-81.
doi: 10.1177/153537020122601103.

Brain pathways controlling food intake and body weight

Affiliations
Free article
Review

Brain pathways controlling food intake and body weight

M W Schwartz. Exp Biol Med (Maywood). 2001 Dec.
Free article

Abstract

Evidence has existed for more than 50 years in support of the hypothesis that body energy stored in the form of fat is homeostatically regulated. Implicit in this concept is the existence of a biological system that operates dynamically over time to match cumulative energy intake to energy expenditure. For example, to compensate for weight loss induced by energy restriction, animals must enter a period of positive energy balance (i.e., energy intake greater than energy expenditure) that is sustained for as long as it takes to correct the deficit in body fat stores. Having reached this point, the animal must return to a state of neutral energy balance if stable fat mass is to be maintained. The identification of neuronal circuits in the hypothalamus that, when activated, exert potent, unidirectional effects on energy balance provides a cornerstone of support for this model. The additional finding that these central effector pathways are regulated by humoral signals generated in proportion to body fat stores, including the hormones insulin and leptin, helps to round out the picture of how energy homeostasis is achieved. The goal of this overview is to highlight the evidence that specific subsets of hypothalamic neurons containing specific signaling molecules participate in this dynamic regulatory process, and to put these observations in the larger context of a biological system that controls body adiposity.

PubMed Disclaimer

Publication types