Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan;53(1):192-201.
doi: 10.1016/s0008-6363(01)00453-9.

Atrial fibrillation-induced atrial contractile dysfunction: a tachycardiomyopathy of a different sort

Affiliations

Atrial fibrillation-induced atrial contractile dysfunction: a tachycardiomyopathy of a different sort

Ulrich Schotten et al. Cardiovasc Res. 2002 Jan.

Abstract

Objective: Although AF-induced atrial contractile dysfunction has significant clinical implications the underlying intracellular mechanisms are poorly understood.

Methods: From the right atrial appendages of 59 consecutive patients undergoing mitral valve surgery (31 in SR, 28 in chronic AF) thin muscle preparations (diameter<0.7 mm) were isolated. Isometric force of contraction was measured in the presence of different concentrations of Ca(2+) and isoprenaline. To assess the function of the sarcoplasmic reticulum, the force-frequency relationship and the post-rest potentiation were studied. The myocardial density of the ryanodine-sensitive calcium release channel (CRC) of the sarcoplasmic reticulum was determined by [3H]ryanodine binding. Myocardial content of SR-Ca(2+)-ATPase (SERCA), phospholamban (Plb), calsequestrin (Cals) and the Na(+)/Ca(2+)-exchanger (NCX) were analyzed by Western blot analysis. Adenylyl cyclase activity was measured with a radiolabeled bioassay using [32P]ATP as a tracer.

Results: In 72 muscle preparations of SR patients contractile force was 10.9+/-1.8 mN/mm(2) compared to 3.3+/-0.9 mN/mm(2) (n=48, P<0.01) in AF patients. The positive inotropic effect of isoprenaline was diminished but the stimulatory effect on relaxation and the adenylyl cyclase were not altered in AF patients. The force-frequency relation and the post-rest potentiation were enhanced in atrial myocardium of AF patients. The protein levels of CRC, SERCA, Plb, and Cals were not different between the two groups. In contrast, the Na(+)/Ca(2+)-exchanger was upregulated by 67% in atria of AF patients.

Conclusions: AF-induced atrial contractile dysfunction is not due to beta-adrenergic desensitization or dysfunction of the sarcoplasmic reticulum and thus is based on different cellular mechanisms than a ventricular tachycardia-induced cardiomyopathy. Instead, downregulation or altered function of the L-type Ca(2+)-channel and an increased Ca(2+) extrusion via the Na(+)/Ca(2+)-exchanger seem to be responsible for the depressed contractility in remodeled atria.

PubMed Disclaimer

Publication types