Protective effect of insulin-like-growth-factor-1 against dopamine-induced neurotoxicity in human and rodent neuronal cultures: possible implications for Parkinson's disease
- PMID: 11744219
- DOI: 10.1016/s0304-3940(01)02344-8
Protective effect of insulin-like-growth-factor-1 against dopamine-induced neurotoxicity in human and rodent neuronal cultures: possible implications for Parkinson's disease
Abstract
Parkinson's disease (PD) is characterized by a progressive loss of 70-80% of dopaminergic (DA) neurons in the substantia nigra. High concentrations of DA were suggested to induce oxidative stress and selective neurodegeneration. We evaluated the effect of insulin-like-growth-factor-1 (IGF-1) on DA toxicity in neuronal cultures. IGF-1 (0.5 microg/ml) suppressed cell death induced by exposure to DA (0.3 mM) after 2 and 4 days, in a rat cerebellar culture. Similarly, IGF-1 (0.5 and 1.0 microg/ml) antagonized DA (0.125 and 0.250 mM) neurotoxicity in a human neuroblastoma cell line (SK-N-SH). Flowcytometric analysis of neuroblastoma cells treated with DA (0.5 mM) showed increased apoptosis, which was significantly reduced by IGF-1. The effect of IGF-1 was associated with increased Bcl-2 expression as indicated by flowcytometry and Western blot analysis. We suggest that IGF-1 possesses a neuroprotective effect against DA-induced toxicity, and may have a potential role in the treatment of PD.