Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan;92(1):248-56.
doi: 10.1152/japplphysiol.00434.2001.

Modeling pulmonary and CNS O(2) toxicity and estimation of parameters for humans

Affiliations
Free article

Modeling pulmonary and CNS O(2) toxicity and estimation of parameters for humans

R Arieli et al. J Appl Physiol (1985). 2002 Jan.
Free article

Abstract

The power expression for cumulative oxygen toxicity and the exponential recovery were successfully applied to various features of oxygen toxicity. From the basic equation, we derived expressions for a protocol in which PO(2) changes with time. The parameters of the power equation were solved by using nonlinear regression for the reduction in vital capacity (DeltaVC) in humans: %DeltaVC = 0.0082 x t(2)(PO(2)/101.3)(4.57), where t is the time in hours and PO(2) is expressed in kPa. The recovery of lung volume is DeltaVC(t) = DeltaVC(e) x e(-(-0.42 + 0.00379PO(2))t), where DeltaVC(t) is the value at time t of the recovery, DeltaVC(e) is the value at the end of the hyperoxic exposure, and PO(2) is the prerecovery oxygen pressure. Data from different experiments on central nervous system (CNS) oxygen toxicity in humans in the hyperbaric chamber (n = 661) were analyzed along with data from actual closed-circuit oxygen diving (n = 2,039) by using a maximum likelihood method. The parameters of the model were solved for the combined data, yielding the power equation for active diving: K = t(2) (PO(2)/101.3)(6.8), where t is in minutes. It is suggested that the risk of CNS oxygen toxicity in diving can be derived from the calculated parameter of the normal distribution: Z = [ln(t) - 9.63 +3.38 x ln(PO(2)/101.3)]/2.02. The recovery time constant for CNS oxygen toxicity was calculated from the value obtained for the rat, taking into account the effect of body mass, and yielded the recovery equation: K(t) = K(e) x e(-0.079t), where K(t) and K(e) are the values of K at time t of the recovery process and at the end of the hyperbaric oxygen exposure, respectively, and t is in minutes.

PubMed Disclaimer

LinkOut - more resources