Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan;4(1):79-82.
doi: 10.1038/ncb733.

Association of human TFIID-promoter complexes with silenced mitotic chromatin in vivo

Affiliations

Association of human TFIID-promoter complexes with silenced mitotic chromatin in vivo

Rossitza Christova et al. Nat Cell Biol. 2002 Jan.

Abstract

When eukaryotic cells enter mitosis, transcription is abruptly silenced. Earlier studies indicated that most transcription factors and RNA polymerase II (RNAP II) are displaced when chromatin is condensed into mitotic chromosomes. A more recent study suggested that hitherto unidentified factors might 'bookmark' previously active genes for rapid reactivation after cell division. Here we used chromatin immunoprecipitation (ChIP) assays to examine the association of TFIID, TFIIB, NC2 and RNAP II with various gene promoters in asynchronous and mitotic human cell populations. We show that TFIID and TFIIB can remain associated with active gene promoters during mitosis whereas RNA polymerase II is displaced, and also that NC2, originally identified as ubiquitous repressor of transcription, is associated with active gene promoters in asynchronous cell populations and is displaced from some, but not all, genes in mitotic cells. Consistent with the remarkable stability of TFIID-promoter complexes observed in vitro, our data suggest that these complexes can withstand condensation of chromatin into transcriptionally silent chromosomes. Stable TFIID-promoter complexes are therefore implicated in the propagation of cell-type-specific gene expression patterns through cell division.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources