Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov 1;66(3):475-81.
doi: 10.1002/jnr.1238.

Nongenomic mechanism mediates estradiol stimulation of axon growth in male rat hypothalamic neurons in vitro

Affiliations

Nongenomic mechanism mediates estradiol stimulation of axon growth in male rat hypothalamic neurons in vitro

M J Cambiasso et al. J Neurosci Res. .

Abstract

The purpose of the present work was to investigate the participation of estradiol receptors (ER) in estrogen-induced axon growth in vitro. Hypothalamic neurons from 16 day (E16) male rat fetuses were cultured with or without 17-beta-estradiol at 1 x 10(-7) M in basal medium or medium conditioned by astroglia derived from ventral mesencephalon (CM). After 48 hr in vitro, neurite outgrowth was quantified by morphometric analysis. An axogenic effect could be demonstrated for estradiol added to CM. With RT-PCR, the mRNA transcript for ERalpha was found in the donor tissues as well as in the neuron cultures. In this model two specific nuclear ER blockers (tamoxifen and ICI 182,780) were ineffective in blocking the neuritogenic effect, and a membrane-impermeable estrogen-albumin construct (E2-BSA) was as effective as estradiol. These results indicate that the axogenic effect of estradiol at E16 is not exerted through the classical intracellular receptor signal transduction system and suggest the possibility of a membrane-mediated mechanism. The data are discussed in light of our previous findings pointing to the interdependent activation of the estrogenic and the trophic factor signaling pathways that mediate stimulated axon growth.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources