Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan 1;46(1):61-71.
doi: 10.1002/prot.10011.

A unifold, mesofold, and superfold model of protein fold use

Affiliations

A unifold, mesofold, and superfold model of protein fold use

Andrew F W Coulson et al. Proteins. .

Abstract

As more and more protein structures are determined, there is increasing interest in the question of how many different folds have been used in biology. The history of the rate of discovery of new folds and the distribution of sequence families among known folds provide a means of estimating the underlying distribution of fold use. Previous models exploiting these data have led to rather different conclusions on the total number of folds. We present a new model, based on the notion that the folds used in biology fall naturally into three classes: unifolds, that is, folds found only in a single narrow sequence family; mesofolds, found in an intermediate number of families; and the previously noted superfolds, found in many protein families. We show that this model fits the available data well and has predicted the development of SCOP over the past 2 years. The principle implications of the model are as follows: (1) The vast majority of folds will be found in only a single sequence family; (2) the total number of folds is at least 10,000; and (3) 80% of sequence families have one of about 400 folds, most of which are already known.

PubMed Disclaimer

Similar articles

Cited by

Publication types