Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Jan;43(1):12-8.
doi: 10.1002/syn.1114.

NMDA antagonist effects on striatal dopamine release: microdialysis studies in awake monkeys

Affiliations
Comparative Study

NMDA antagonist effects on striatal dopamine release: microdialysis studies in awake monkeys

Barbara W Adams et al. Synapse. 2002 Jan.

Abstract

Brain imaging studies have suggested that the NMDA antagonist ketamine is as potent a releaser of striatal dopamine as amphetamine. This conclusion contradicts microdialysis findings in the rodent that NMDA antagonists, in contrast to amphetamine, have little or no effect on striatal dopamine release. The present study addressed two mechanisms that could account for this discrepancy: 1) whether there is a species difference, i.e., rodents vs. primates, in the responsivity of striatal dopamine to NMDA antagonists, and 2) whether rapid uptake of dopamine prevents reliable measures of synaptic dopamine release by microdialysis in response to NMDA antagonists. MRI-directed in vivo microdialysis was used to compare the effects of psychotomimetic NMDA antagonists phencyclidine (PCP), ketamine, and amphetamine on extracellular striatal dopamine levels in awake rhesus monkeys. The effect of PCP was also investigated in the presence of intrastriatally applied nomifensine, a dopamine uptake blocker. Amphetamine (0.1 or 0.4 mg/kg) produced robust and dose-dependent increases in dopamine release ranging 2-10-fold above baseline. PCP at 0.1 mg/kg had no effect and at 0.3 mg/kg produced a small 50% increase over baseline. Ketamine, at the relatively high dose of 5 mg/kg, produced only a 30% increase in dopamine release. Intrastriatal application of nomifensine did not influence the effect of PCP, suggesting that rapid uptake of dopamine is not preventing the detection of a PCP-induced increase in dopamine release. These findings suggest that in the primate, ketamine and PCP are not effective dopamine releasers, as has been suggested by previous imaging studies.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources