Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov;14(5):617-27.
doi: 10.1002/jmri.1227.

A method for fast 3D tracking using tuned fiducial markers and a limited projection reconstruction FISP (LPR-FISP) sequence

Affiliations

A method for fast 3D tracking using tuned fiducial markers and a limited projection reconstruction FISP (LPR-FISP) sequence

C Flask et al. J Magn Reson Imaging. 2001 Nov.

Abstract

This work demonstrates the feasibility of using wireless, tuned fiducial markers with a limited projection reconstruction-fast imaging with steady-state free precession sequence (LPR-FISP) to accurately obtain tracking information necessary for interactive scan plane selection in magnetic resonance imaging (MRI). The position and orientation of a rigid interventional device can be uniquely determined from the 3D coordinates of three fiducial markers mounted in a known configuration on the device. Three fiducial markers were tuned to the proton resonant frequency in a 0.2T open MR scanner and mounted to the surface of a cylindrical water phantom. An LPR-FISP sequence was developed to suppress the water phantom signal while preserving that of the fiducial markers through a nonselective low-tip-angle excitation and a dephaser gradient applied prior to data acquisition. A localization algorithm was developed to accurately calculate the 3D coordinates of the fiducial markers using four LPR-FISP projections in two orthogonal scan planes. The sequence repetition time (TR = 21 msec) and the limited projection set resulted in fast LPR-FISP coordinate acquisition times of approximately 170 msec with an accuracy (max error) of 3 mm on a 0.2T MR system. This fast, accurate tracking method provides the fundamental technology for interactive MRI scan plane definition for rigid interventional devices without the need for stereotactic cameras or reference frames.

PubMed Disclaimer

Publication types

LinkOut - more resources