Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec 25;40(51):15456-63.
doi: 10.1021/bi011858j.

Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions

Affiliations

Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions

A A Sauve et al. Biochemistry. .

Abstract

The Sir2 enzyme family is responsible for a newly classified chemical reaction, NAD(+)-dependent protein deacetylation. New peptide substrates, the reaction mechanism, and the products of the acetyl transfer to NAD(+) are described for SIR2. The final products of SIR2 reactions are the deacetylated peptide and the 2' and 3' regioisomers of O-acetyl ADP ribose (AADPR), formed through an alpha-1'-acetyl ADP ribose intermediate and intramolecular transesterification reactions (2' --> 3'). The regioisomers, their anomeric forms, the interconversion rates, and the reaction equilibria were characterized by NMR, HPLC, 18O exchange, and MS methods. The mechanism of acetyl transfer to NAD(+) includes (1) ADP ribosylation of the peptide acyl oxygen to form a high-energy O-alkyl amidate intermediate, (2) attack of the 2'-OH group on the amidate to form a 1',2'-acyloxonium species, (3) hydrolysis to 2'-AADPR by the attack of water on the carbonyl carbon, and (4) an SIR2-independent transesterification equilibrating the 2'- and 3'-AADPRs. This mechanism is unprecedented in ADP-ribosyl transferase enzymology. The 2'- and 3'-AADPR products are candidate molecules for SIR2-initiated signaling pathways.

PubMed Disclaimer

Publication types

MeSH terms