Assessing gene significance from cDNA microarray expression data via mixed models
- PMID: 11747616
- DOI: 10.1089/106652701753307520
Assessing gene significance from cDNA microarray expression data via mixed models
Abstract
The determination of a list of differentially expressed genes is a basic objective in many cDNA microarray experiments. We present a statistical approach that allows direct control over the percentage of false positives in such a list and, under certain reasonable assumptions, improves on existing methods with respect to the percentage of false negatives. The method accommodates a wide variety of experimental designs and can simultaneously assess significant differences between multiple types of biological samples. Two interconnected mixed linear models are central to the method and provide a flexible means to properly account for variability both across and within genes. The mixed model also provides a convenient framework for evaluating the statistical power of any particular experimental design and thus enables a researcher to a priori select an appropriate number of replicates. We also suggest some basic graphics for visualizing lists of significant genes. Analyses of published experiments studying human cancer and yeast cells illustrate the results.
Similar articles
-
Possibilistic approach for biclustering microarray data.Comput Biol Med. 2007 Oct;37(10):1426-36. doi: 10.1016/j.compbiomed.2007.01.005. Epub 2007 Mar 8. Comput Biol Med. 2007. PMID: 17346690
-
The clustering of regression models method with applications in gene expression data.Biometrics. 2006 Jun;62(2):526-33. doi: 10.1111/j.1541-0420.2005.00498.x. Biometrics. 2006. PMID: 16918917
-
Hierarchical signature clustering for time series microarray data.Adv Exp Med Biol. 2011;696:57-65. doi: 10.1007/978-1-4419-7046-6_6. Adv Exp Med Biol. 2011. PMID: 21431546
-
Differential analysis of DNA microarray gene expression data.Mol Microbiol. 2003 Feb;47(4):871-7. doi: 10.1046/j.1365-2958.2003.03298.x. Mol Microbiol. 2003. PMID: 12581345 Review.
-
Toxicogenomics using yeast DNA microarrays.J Biosci Bioeng. 2010 Nov;110(5):511-22. doi: 10.1016/j.jbiosc.2010.06.003. Epub 2010 Jul 10. J Biosci Bioeng. 2010. PMID: 20624688 Review.
Cited by
-
Genome-wide transcriptomic analysis of the effects of sub-ambient atmospheric oxygen and elevated atmospheric carbon dioxide levels on gametophytes of the moss, Physcomitrella patens.J Exp Bot. 2015 Jul;66(13):4001-12. doi: 10.1093/jxb/erv197. Epub 2015 May 6. J Exp Bot. 2015. PMID: 25948702 Free PMC article.
-
Comparison of intact Arabidopsis thaliana leaf transcript profiles during treatment with inhibitors of mitochondrial electron transport and TCA cycle.PLoS One. 2012;7(9):e44339. doi: 10.1371/journal.pone.0044339. Epub 2012 Sep 18. PLoS One. 2012. PMID: 23028523 Free PMC article.
-
Statistical inference from multiple iTRAQ experiments without using common reference standards.J Proteome Res. 2013 Feb 1;12(2):594-604. doi: 10.1021/pr300624g. Epub 2013 Jan 16. J Proteome Res. 2013. PMID: 23270375 Free PMC article.
-
A role for the mitogen-activated protein kinase kinase kinase 1 in epithelial wound healing.Mol Biol Cell. 2006 Aug;17(8):3446-55. doi: 10.1091/mbc.e06-02-0102. Epub 2006 Jun 7. Mol Biol Cell. 2006. PMID: 16760432 Free PMC article.
-
Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis.Plant Physiol. 2005 Jun;138(2):734-43. doi: 10.1104/pp.104.053884. Epub 2005 Apr 29. Plant Physiol. 2005. PMID: 15863702 Free PMC article.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases