Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2001 Dec;95(6):1351-5.
doi: 10.1097/00000542-200112000-00012.

The effect of prone positioning on intraocular pressure in anesthetized patients

Affiliations
Clinical Trial

The effect of prone positioning on intraocular pressure in anesthetized patients

M A Cheng et al. Anesthesiology. 2001 Dec.

Abstract

Background: Ocular perfusion pressure is commonly defined as mean arterial pressure minus intraocular pressure (IOP). Changes in mean arterial pressure or IOP can affect ocular perfusion pressure. IOP has not been studied in this context in the prone anesthetized patient.

Methods: After institutional human studies committee approval and informed consent, 20 patients (American Society of Anesthesiologists physical status I-III) without eye disease who were scheduled for spine surgery in the prone position were enrolled. IOP was measured with a Tono-pen XL handheld tonometer at five time points: awake supine (baseline), anesthetized (supine 1), anesthetized prone (prone 1), anesthetized prone at conclusion of case (prone 2), and anesthetized supine before wake-up (supine 2). Anesthetic protocol was standardized. The head was positioned with a pinned head-holder. Data were analyzed with repeated-measures analysis of variance and paired t test.

Results: Supine 1 IOP (13 +/- 1 mmHg) decreased from baseline (19 +/- 1 mmHg) (P < 0.05). Prone 1 IOP (27 +/- 2 mmHg) increased in comparison with baseline (P < 0.05) and supine 1 (P < 0.05). Prone 2 IOP (40 +/- 2 mmHg) was measured after 320 +/- 107 min in the prone position and was significantly increased in comparison with all previous measurements (P < 0.05). Supine 2 IOP (31 +/- 2 mmHg) decreased in comparison with prone 2 IOP (P < 0.05) but was relatively elevated in comparison with supine 1 and baseline (P < 0.05). Hemodynamic and ventilatory parameters remained unchanged during the prone period.

Conclusions: Prone positioning increases IOP during anesthesia. Ocular perfusion pressure could therefore decrease, despite maintenance of normotension.

PubMed Disclaimer

Comment in

Publication types