Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec 3;1522(2):74-81.
doi: 10.1016/s0167-4781(01)00308-6.

Molecular cloning, functional expression and characterization of p15, a novel fungal protein with potent neurite-inducing activity in PC12 cells

Affiliations

Molecular cloning, functional expression and characterization of p15, a novel fungal protein with potent neurite-inducing activity in PC12 cells

S Wakatsuki et al. Biochim Biophys Acta. .

Abstract

p15 is a novel fungal protein which induces neurite outgrowth and neuronal differentiation of PC12 cells. In the present study, we report molecular cloning, functional expression and characterization of the gene encoding p15. The deduced amino acid sequence suggested that p15 is synthesized as a precursor with 31 extra amino-terminal amino acids including a putative signal sequence, and 20 carboxy-terminal amino acids, in addition to the 118 amino acids-long mature region with neurite-inducing activity. From the poly(A)(+) RNA prepared from the producing fungal strain, a cDNA fragment encoding the mature region of p15 was amplified and His(6)-tagged recombinant p15 was produced in Escherichia coli. The recombinant protein purified by a single step on Ni(2+) agarose column chromatography exhibited comparable specific activity as native p15 in the PC12 neurite extension assay. The effect of His(6)-p15 was blocked by nicardipine, suggesting that Ca(2+) influx through the L-type Ca(2+) channels is essential for its neurite-inducing activity. In addition, mutational analysis of His(6)-p15 demonstrated that both intramolecular disulfide bonds are essential for its biological activity.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources