Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2002 Jan-Feb;13(1):35-43.
doi: 10.1016/s1043-2760(01)00503-3.

Neurosteroids: biochemistry and clinical significance

Affiliations
Review

Neurosteroids: biochemistry and clinical significance

Synthia H Mellon et al. Trends Endocrinol Metab. 2002 Jan-Feb.

Abstract

The brain, like the adrenals, gonads and the placenta, is a steroidogenic tissue. However, unlike classic steroidogenic tissues, the synthesis of steroids in the nervous system requires coordinated expression and regulation of genes encoding the steroidogenic enzymes in several different cell types (neurons and glia) at different locations in the nervous system, often at some distance from the cell bodies. Furthermore, the synthesis of these steroids might be developmentally regulated and related to their functions in the developing brain. The steroids synthesized by the brain and nervous system, given the name 'neurosteroids', have a wide variety of diverse functions. In general, they mediate their actions not through classic steroid hormone nuclear receptors, but through other mechanisms, such as ion-gated neurotransmitter receptors or direct/indirect modulation of other neurotransmitter receptors. We summarize the biochemistry of the enzymes involved in the biosynthesis of neurosteroids, their pharmacological properties and modes of action. The physiological relevance and potential uses of neurosteroids in certain human diseases are discussed.

PubMed Disclaimer

Publication types

LinkOut - more resources