Partitioning of differently sized poly(ethylene glycol)s into OmpF porin
- PMID: 11751305
- PMCID: PMC1302458
- DOI: 10.1016/S0006-3495(02)75383-6
Partitioning of differently sized poly(ethylene glycol)s into OmpF porin
Abstract
To understand the physics of polymer equilibrium and dynamics in the confines of ion channel pores, we study partitioning of poly(ethylene glycol)s (PEGs) of different molecular weights into the bacterial porin, OmpF. Thermodynamic and kinetic parameters of partitioning are deduced from the effects of polymer addition on ion currents through single OmpF channels reconstituted into planar lipid bilayer membranes. The equilibrium partition coefficient is inferred from the average reduction of channel conductance in the presence of PEG; rates of polymer exchange between the pore and the bulk are estimated from PEG-induced conductance noise. Partition coefficient as a function of polymer weight is best fitted by a "compressed exponential" with the compression factor of 1.65. This finding demonstrates that PEG partitioning into the OmpF channel pore has sharper dependence on polymer molecular weight than predictions of hard-sphere, random-flight, or scaling models. A 1360-Da polymer separates regimes of partitioning and exclusion. Comparison of its characteristic size with the size of a 2200-Da polymer previously found to separate these regimes for the alpha-toxin shows good agreement with the x-ray structural data for these channels. The PEG-induced conductance noise is compatible with the polymer mobility reduced inside the OmpF pore by an order of magnitude relatively to its value in bulk solution.
Similar articles
-
Partitioning of individual flexible polymers into a nanoscopic protein pore.Biophys J. 2003 Aug;85(2):897-910. doi: 10.1016/S0006-3495(03)74529-9. Biophys J. 2003. PMID: 12885637 Free PMC article.
-
Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution.J Mol Biol. 2002 Jun 21;319(5):1177-97. doi: 10.1016/S0022-2836(02)00380-7. J Mol Biol. 2002. PMID: 12079356
-
Polymeric nonelectrolytes to probe pore geometry: application to the alpha-toxin transmembrane channel.Biophys J. 1999 Dec;77(6):3023-33. doi: 10.1016/S0006-3495(99)77133-X. Biophys J. 1999. PMID: 10585924 Free PMC article.
-
Single channel activity of OmpF-like porin from Yersinia pseudotuberculosis.Biochim Biophys Acta. 2016 Apr;1858(4):883-91. doi: 10.1016/j.bbamem.2016.02.005. Epub 2016 Feb 17. Biochim Biophys Acta. 2016. PMID: 26854962
-
Probing protein nanopores with poly(ethylene glycol)s.Proteomics. 2022 Mar;22(5-6):e2100055. doi: 10.1002/pmic.202100055. Epub 2022 Jan 24. Proteomics. 2022. PMID: 35030301 Review.
Cited by
-
Metagenomic and Metaproteomic Insights into Photoautotrophic and Heterotrophic Interactions in a Synechococcus Culture.mBio. 2020 Feb 18;11(1):e03261-19. doi: 10.1128/mBio.03261-19. mBio. 2020. PMID: 32071270 Free PMC article.
-
Molecular basis of bacterial outer membrane permeability revisited.Microbiol Mol Biol Rev. 2003 Dec;67(4):593-656. doi: 10.1128/MMBR.67.4.593-656.2003. Microbiol Mol Biol Rev. 2003. PMID: 14665678 Free PMC article. Review.
-
Peptide translocation through the mesoscopic channel: binding kinetics at the single molecule level.Eur Biophys J. 2013 May;42(5):363-9. doi: 10.1007/s00249-012-0885-6. Epub 2012 Dec 29. Eur Biophys J. 2013. PMID: 23271514
-
Two distinct mechanisms of transport through the plasmodial surface anion channel.J Membr Biol. 2008 Nov-Dec;226(1-3):27-34. doi: 10.1007/s00232-008-9136-2. Epub 2008 Dec 3. J Membr Biol. 2008. PMID: 19050955 Free PMC article.
-
Pseudomonas aeruginosa porin OprF: properties of the channel.J Biol Chem. 2006 Jun 16;281(24):16230-7. doi: 10.1074/jbc.M600650200. Epub 2006 Apr 14. J Biol Chem. 2006. PMID: 16617058 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources