Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Aug 18;161(2):145-55.
doi: 10.1007/BF00220363.

Recovery of brain noradrenaline after 5,7-dihydroxytryptamine-induced axonal lesions in the rat

Recovery of brain noradrenaline after 5,7-dihydroxytryptamine-induced axonal lesions in the rat

A Björklund et al. Cell Tissue Res. .

Abstract

Time-dependent changes in regional CNS noradrenaline (NA) concentration, 3H-NA uptake and fluorescence morphology of CNS NA neurons were analysed in the adult rat up to 6 months after intraventricular injection of 5,7-dihydroxytryptamine (5,7-DHT), and compared with the time-course of changes in brain and spinal cord indolamine neurons. Following a substantial depletion of both amines in all CNS regions (telodiencephalon, brainstem and spinal cord) at 10 days after 150 mug 5,7-DHT, brain NA--but not 5-HT--levels recovered to near-normal values in brainstem and forebrain (35% below the age-matched controls) within 4 months. This was accompanied by a total restoration of the initially decreased capacity of the brain tissue to accumulate 3H-NA in vitro. Within 10 days after 5,7-DHT, there was a disappearance of NA terminals from many telencephalic, diencephalic and lower brain stem nuclei, from the cerebral and cerebellar cortices, and the grey matter of the spinal cord, concomitant with the appearance of numerous distorted, highly fluorescent swellings along the non-terminal axons of the major noradrenergic projection pathways. The recovery of the NA levels was paralleled by a re-appearance of fluorescent fibres, signifying an intense sprouting and regrowth of the drug-lesioned axons, which eventually re-innervated some of the previously denervated telodiencephalic regions. Except for a permanent loss of some surface-near perikarya in group A1 (the main source of the bulbospinal projections) there was no evidence of a retrograde degeneration of noradrenergic cell bodies in the rat CNS. The results are compatible with the idea that 5,7-DHT mainly causes a lesion of NA axons at a distance from the cell bodies, and this is followed by sprouting and regrowth of axons from the lisioned neurites, and formation of new terminal-like fibres in some previously denervated telodiencephalic regions. These findings indicate that chemical axotomy of central NA neurons induced by 5,7-DHT is--in contrast to that induced by 6-hydroxydopamine--followed by extensive axonal regeneration.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Neurochem. 1973 Jul;21(1):251-3 - PubMed
    1. J Neurochem. 1975 Apr;24(4):833-5 - PubMed
    1. Brain Res. 1972 Feb 25;37(2):310-6 - PubMed
    1. Prog Histochem Cytochem. 1972;4(1):1-90 - PubMed
    1. Med Biol. 1974 Feb;52(1):55-65 - PubMed

MeSH terms