Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan;61(1):7-12.
doi: 10.1124/mol.61.1.7.

Diclofenac antagonizes peroxisome proliferator-activated receptor-gamma signaling

Affiliations

Diclofenac antagonizes peroxisome proliferator-activated receptor-gamma signaling

Douglas J A Adamson et al. Mol Pharmacol. 2002 Jan.

Abstract

Although nonsteroidal anti-inflammatory drugs (NSAIDs) are used as cancer chemopreventative agents, their mechanism is unclear because NSAIDs have cyclooxygenase-independent actions. We investigated an alternative target for NSAIDs, peroxisome proliferator-activated receptor-gamma (PPARgamma), activation of which decreases cancer cell proliferation. NSAIDs have been shown to activate this receptor, but only at high concentrations. Here, we have examined binding of diclofenac to PPARgamma using a cis-parinaric acid displacement assay and studied the effect of diclofenac effect on PPARgamma trans-activation in a COS-1 cell reporter assay. Unexpectedly, diclofenac bound PPARgamma at therapeutic concentrations (K(i) = 700 nM) but induced only 2-fold activation of PPARgamma at a concentration of 25 microM and antagonized PPARgamma trans-activation by rosiglitazone. This antagonism was overcome with increasing rosiglitazone concentrations, indicating that diclofenac is a partial agonist. No effect of diclofenac was seen without exogenous receptor, confirming that it was working through a PPARgamma-specific mechanism. This is the first description of an NSAID that can antagonize PPARgamma. In addition, this is the first time that an NSAID has been shown to bind this receptor at clinically meaningful concentrations. The physiological relevance of these findings was tested using adipocyte differentiation and cancer cell proliferation assays. Diclofenac decreased PPARgamma-mediated adipose cell differentiation by 60% and inhibited the action of rosiglitazone on the prostate cancer cell line, DU-145, allowing a 3-fold increase in proliferation. This work shows that standard doses of diclofenac may have pharmacodynamic interactions with rosiglitazone and this has therapeutic implications, both in the management of type 2 diabetes and during cancer treatment.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources