Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Jan 23;2001(66):pe1.
doi: 10.1126/stke.2001.66.pe1.

PDK2: a complex tail in one Akt

Affiliations
Review

PDK2: a complex tail in one Akt

T O Chan et al. Sci STKE. .

Abstract

The kinase Akt contains two phosphatidylinositol-3 kinase (PI3K)-dependent phosphorylation sites, one in the activation loop (Thr(308)) and one in the carboxyl-terminal tail (Ser(473)), both of which are conserved among the members of the AGC kinase family. Under physiological conditions, the phosphorylation of Thr(308) appears to be coordinately regulated with the phosphorylation of Ser(473). Under experimental conditions, however, the two sites can be uncoupled, suggesting that their phosphorylation is controlled by different kinases and phosphatases. Phosphoinositide-dependent kinase 1 (PDK1), the kinase that phosphorylates the activation loop site, has been unambiguously identified. However, PDK2, a kinase that is hypothesized to phosphorylate the hydrophobic carboxyl-terminal site, remains elusive. This Perspective examines the regulation and biological significance of Akt phosphorylation at Ser(473). The authors propose that Ser(473) undergoes both autophosphorylation and phosphorylation by other kinases. Both events may be promoted by interactions between PDK1 and phosphorylated or phosphomimetically altered hydrophobic phosphorylation motifs in kinases associated with Akt. These interactions may induce conformational changes in Akt that make Ser(473) accessible to phosphorylation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources