Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec 15;291(4):317-38.
doi: 10.1002/jez.1132.

A molecular model for the evolution of endothermy in the theropod-bird lineage

Affiliations

A molecular model for the evolution of endothermy in the theropod-bird lineage

M H Schweitzer et al. J Exp Zool. .

Abstract

Ectothermy is a primitive state; therefore, a shared common ancestor of crocodiles, dinosaurs, and birds was at some point ectothermic. Birds, the extant descendants of the dinosaurs, are endothermic. Neither the metabolic transition within this lineage nor the place the dinosaurs held along the ectothermic-endothermic continuum is defined. This paper presents a conceptual model for the evolution of endothermy in the theropod-bird lineage. It is recognized that other animals (some fish, insects, etc.) are functionally endothermic. However, endothermy in other clades is beyond the scope of this paper, and we address the onset of endothermy in only the theropod/bird clade. The model begins with simple changes in a single gene of a common ancestor, and it includes a series of concomitant physiological and morphological changes, beginning perhaps as early as the first archosaurian common ancestor of dinosaurs and crocodiles. These changes continued to accumulate within the theropod-avian lineage, were maintained and refined through selective forces, and culminated in extant birds. Metabolic convergence or homoplasy is evident in the inherent differences between the endothermy of mammals and the endothermy of extant birds. The strength and usefulness of this model lie in the phylogenetic, genetic, evolutionary, and adaptive plausibility of each of the suggested developmental steps toward endothermy. The model, although conceptual in nature, relies on an extensive knowledge base developed by numerous workers in each of these areas. In addition, the model integrates known genetic, metabolic, and developmental aspects of extant taxa that phylogenetically bracket theropod dinosaurs for comparison with information derived from the fossil record of related extinct taxa.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources