Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2002 Jan 14;317(3):143-6.
doi: 10.1016/s0304-3940(01)02437-5.

Stereoselectivities of enantiomers of huperzine A in protection against beta-amyloid(25-35)-induced injury in PC12 and NG108-15 cells and cholinesterase inhibition in mice

Affiliations
Comparative Study

Stereoselectivities of enantiomers of huperzine A in protection against beta-amyloid(25-35)-induced injury in PC12 and NG108-15 cells and cholinesterase inhibition in mice

Hai Yan Zhang et al. Neurosci Lett. .

Abstract

Recently, the potent cholinesterase inhibitor (-)-huperzine A (HupA) was demonstrated to protect neuronal and glial cells against the cytotoxicity of beta-amyloid (Abeta). Since the unnatural (+)-HupA is a much less potent inhibitor, it was of interest to examine the stereoselectivity of cellular protection by the two isomers. In the present study, effects of (+)- and (-)-HupA on Abeta(25-35)-induced injury were compared in PC12 and NG108-15 neuroblastoma cell lines. Following a 24 h exposure to 1 microM Abeta(25-35), cell survival was markedly reduced, but preincubation with (+)-HupA or (-)-HupA (0.1-10 microM) enhanced survival significantly. The potency of (-)-HupA and (+)-HupA in protecting against Abeta toxicity was similar. This result contrasted with the stereoselectivity of cholinesterase inhibition in vitro and in vivo, in which (-)-HupA is about 50-fold more potent than (+)-HupA. It is concluded that the neuroprotective properties of HupA enantiomers have no relation to anti-cholinesterase activity.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources