Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Nov;79(11):899-904.

Cooling is a potent vasodilator of deep vessels in the rat

Affiliations
  • PMID: 11760091

Cooling is a potent vasodilator of deep vessels in the rat

S Mustafa et al. Can J Physiol Pharmacol. 2001 Nov.

Abstract

The objectives of this study were to determine the effect of cooling on smooth muscle tone of the pulmonary artery and aorta and to clarify the basic mechanism of these responses. We recorded isometric tension in smooth muscle strips of rat pulmonary artery and aorta in organ baths during stepwise cooling. Cooling responses were tested before and after the addition of various standard agents that interfere with known neurogenic (autonomic blockers, tetrodotoxin) and myogenic mechanisms (calcium channel blockers) of relaxation. We also examined the hypothesis of the presence of a cooling-released substance. Stepwise cooling (37degrees C to 4 degrees C) of aortic smooth muscle induced reproducible graded relaxations that were inversely proportional to temperature. Cooling-induced relaxation was not dependent on a neural mechanism nor the release of neurotransmitters or a cooling-released substance such as NO or CO. Cooling of pulmonary arterial and aortic smooth muscle preparations induced a graded myogenic relaxation inversely proportional to the cooling temperature. The mechanism is not dependent on local nervous or known mediators but related to a direct physico-chemical effect of cooling.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources