Transport capabilities encoded within the Bacillus subtilis genome
- PMID: 11763970
Transport capabilities encoded within the Bacillus subtilis genome
Abstract
We here describe all recognized established and putative transport proteins encoded within the genome of Bacillus subtilis. These fall into four classes of established transporter types: (1) channel proteins, (2) secondary active transporters, (3) primary active transporters, and (4) group translocators of the sugar-transporting phosphotransferase system (PTS). Additionally, some transporters are recognized that utilize an unknown mode of action or energy coupling mechanism. The secondary carriers (which represent the majority of Bacillus transporters) are subdivided according to substrate specificity and family association. Characteristics of the families as well as the individual transport systems are presented when sufficient information is available. The recognized transporters fall into 58 families including 4 channel types, 42 secondary carrier types, 3 primary carrier types, 4 PTS-types and 5 unknown types.
Similar articles
-
Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes.J Mol Biol. 2000 Aug 4;301(1):75-100. doi: 10.1006/jmbi.2000.3961. J Mol Biol. 2000. PMID: 10926494
-
Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities.J Mol Biol. 1998 Apr 3;277(3):573-92. doi: 10.1006/jmbi.1998.1609. J Mol Biol. 1998. PMID: 9533881
-
Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis.Microbiology (Reading). 1999 Dec;145 ( Pt 12):3419-3429. doi: 10.1099/00221287-145-12-3419. Microbiology (Reading). 1999. PMID: 10627040
-
[PO-independent termination of transcription of catabolite operons in Escherichia coli and Bacillus subtilis].Mol Gen Mikrobiol Virusol. 1999;(3):3-7. Mol Gen Mikrobiol Virusol. 1999. PMID: 10495975 Review. Russian.
-
CcpA-independent carbon catabolite repression in Bacillus subtilis.J Mol Microbiol Biotechnol. 2002 May;4(3):315-21. J Mol Microbiol Biotechnol. 2002. PMID: 11931564 Review.
Cited by
-
Role of secondary transporters and phosphotransferase systems in glucose transport by Oenococcus oeni.J Bacteriol. 2011 Dec;193(24):6902-11. doi: 10.1128/JB.06038-11. Epub 2011 Oct 21. J Bacteriol. 2011. PMID: 22020640 Free PMC article.
-
Overexpression of specific proton motive force-dependent transporters facilitate the export of surfactin in Bacillus subtilis.J Ind Microbiol Biotechnol. 2015 Jan;42(1):93-103. doi: 10.1007/s10295-014-1527-z. Epub 2014 Nov 4. J Ind Microbiol Biotechnol. 2015. PMID: 25366377
-
Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol.Appl Environ Microbiol. 2012 Aug;78(15):5170-81. doi: 10.1128/AEM.00703-12. Epub 2012 May 18. Appl Environ Microbiol. 2012. PMID: 22610424 Free PMC article.
-
Xylose Metabolism and Transport in Bacillus subtilis and Its Application to D-Ribose Production.J Microbiol Biotechnol. 2025 Apr 24;35:e2504021. doi: 10.4014/jmb.2504.04021. J Microbiol Biotechnol. 2025. PMID: 40274416 Free PMC article. Review.
-
Improving Surfactin Production in Bacillus subtilis 168 by Metabolic Engineering.Microorganisms. 2024 May 15;12(5):998. doi: 10.3390/microorganisms12050998. Microorganisms. 2024. PMID: 38792827 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Other Literature Sources