Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Dec;24(12):1373-9.
doi: 10.1248/bpb.24.1373.

Phenolic compounds of Chromolaena odorata protect cultured skin cells from oxidative damage: implication for cutaneous wound healing

Affiliations
Free article

Phenolic compounds of Chromolaena odorata protect cultured skin cells from oxidative damage: implication for cutaneous wound healing

T T Phan et al. Biol Pharm Bull. 2001 Dec.
Free article

Abstract

Extracts from the leaves of Chromolaena odorata have been shown to be beneficial for treatment of wounds. The crude ethanol extract of the plant had been demonstrated to be a powerful antioxidant to protect fibroblasts and keratinocytes in vitro. In this study, the most active compounds were fractionated and identified from the crude extract using liquid chromatography coupled with UV spectroscopy and mass spectrometry. The antioxidant effects of purified fractions on cultured fibroblasts and keratinocytes were investigated using colorimetric and lactate hydrogenase release assay. The results showed that the phenolic acids present (protocatechuic, p-hydroxybenzoic, p-coumaric, ferulic and vanillic acids) and complex mixtures of lipophilic flavonoid aglycones (flavanones, flavonols, flavones and chalcones) were major and powerful antioxidants to protect cultured skin cells against oxidative damage. In conclusion, the extract from C odorata contains a mixture of powerful antioxidant compounds that may be one of potential mechanism contributing to enhanced wound healing.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms