Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001 Nov;35(5):447-64.
doi: 10.1080/10715760100301471.

Interactions of nitric oxide-derived reactive nitrogen species with peroxidases and lipoxygenases

Affiliations
Review

Interactions of nitric oxide-derived reactive nitrogen species with peroxidases and lipoxygenases

M J Coffey et al. Free Radic Res. 2001 Nov.

Abstract

Nitric oxide (NO) is a major free radical modulator of smooth muscle tone, which under basal conditions acts to preserve vascular homeostasis through its anti-inflammatory properties. The biochemistry of NO, in particular, its rapid conversion in vivo into secondary reactive nitrogen species (RNS), its chemical nature as a free radical and its high diffusibility and hydrophobicity dictate that this species will interact with numerous biomolecules and enzymes. In this review, we consider the interactions of a number of enzymes found in the vasculature with NO and NO-derived RNS. All these enzymes are either homeostatic or promote the development of atherosclerosis and hypertension. Therefore their interactions with NO and NO-derived RNS will be of central importance in the initiation and progression of vascular disease. In some examples, (e.g. lipoxygenase, LOX), such interactions provide catalytic 'sinks' for NO, but for others, in particular peroxidases and prostaglandin H synthase (PGHS), reactions with NO may be detrimental. Nitric oxide and NO-derived RNS directly modulate the activity of vascular peroxidases and LOXs through a combination of effects, including transcriptional regulation, altering substrate availability, and direct reaction with enzyme turnover intermediates. Therefore, these interactions will have two major consequences: (i) depletion of NO levels available to cause vasorelaxation and prevent leukocyte/platelet adhesion and (ii) modulation of activity of the target enzymes, thereby altering the generation of bioactive signaling molecules involved in maintenance of vascular homeostasis, including prostaglandins and leukotrienes.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources