Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Feb;23(3):963-8.
doi: 10.1016/s0142-9612(01)00210-1.

Bioactivity of plasma sprayed dicalcium silicate coatings

Affiliations

Bioactivity of plasma sprayed dicalcium silicate coatings

Xuanyong Liu et al. Biomaterials. 2002 Feb.

Abstract

Dicalcium silicate coatings on titanium alloys substrates were prepared by plasma spraying and immersed in simulated body fluids for a period of time to investigate the nucleation and growth of apatite on the surface of the coatings. Surface structural changes of the specimens were analyzed by XRD and IR technologies. SEM and EDS were used to observe surface morphologies and determine the composition of dicalcium silicate coatings before and after immersion in simulated body fluid. The plasma sprayed dicalcium silicate coating was bonding tightly to the substrate. The coating was mainly composed of beta-Ca2SiO4 and glassy phase. A dense carbonate-containing hydroxyapatite (CHA) layer was formed on the surface of the plasma sprayed dicalcium silicate coating soaked in SBF solution for 2 days. In addition, a silica-rich layer was also observed between CHA layer and coatings. With an increase in the immersion time, the CHA layer gradually became thicker. The results obtained indicated that the plasma sprayed dicalcium silicate coating possesses excellent bioactivity.

PubMed Disclaimer

Publication types

LinkOut - more resources