Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus
- PMID: 11773405
- PMCID: PMC135778
- DOI: 10.1128/jvi.76.3.1293-1308.2002
Transcription regulatory sequences and mRNA expression levels in the coronavirus transmissible gastroenteritis virus
Abstract
The transcription regulatory sequences (TRSs) of the coronavirus transmissible gastroenteritis virus (TGEV) have been characterized by using a helper virus-dependent expression system based on coronavirus-derived minigenomes to study the synthesis of subgenomic mRNAs. The TRSs are located at the 5' end of TGEV genes and include a highly conserved core sequence (CS), 5'-CUAAAC-3', that is essential for mediating a 100- to 1,000-fold increase in mRNA synthesis when it is located in the appropriate context. The relevant sequences contributing to TRS activity have been studied by extending the CS 5' upstream and 3' downstream. Sequences from virus genes flanking the CS influenced transcription levels from moderate (10- to 20-fold variation) to complete mRNA synthesis silencing, as shown for a canonical CS at nucleotide (nt) 120 from the initiation codon of the S gene that did not lead to the production of the corresponding mRNA. An optimized TRS has been designed comprising 88 nt from the N gene TRS, the CS, and 3 nt 3' to the M gene CS. Further extension of the 5'-flanking nucleotides (i.e., by 176 nt) decreased subgenomic RNA levels. The expression of a reporter gene (beta-glucuronidase) by using the selected TRS led to the production of 2 to 8 microg of protein per 10(6) cells. The presence of an appropriate Kozak context led to a higher level of protein expression. Virus protein levels were shown to be dependent on transcription and translation regulation.
Figures





Similar articles
-
Role of nucleotides immediately flanking the transcription-regulating sequence core in coronavirus subgenomic mRNA synthesis.J Virol. 2005 Feb;79(4):2506-16. doi: 10.1128/JVI.79.4.2506-2516.2005. J Virol. 2005. PMID: 15681451 Free PMC article.
-
Gene N proximal and distal RNA motifs regulate coronavirus nucleocapsid mRNA transcription.J Virol. 2011 Sep;85(17):8968-80. doi: 10.1128/JVI.00869-11. Epub 2011 Jun 29. J Virol. 2011. PMID: 21715479 Free PMC article.
-
Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis.J Virol. 2004 Jan;78(2):980-94. doi: 10.1128/jvi.78.2.980-994.2004. J Virol. 2004. PMID: 14694129 Free PMC article.
-
Molecular biology of transmissible gastroenteritis virus.Vet Microbiol. 1990 Jun;23(1-4):147-54. doi: 10.1016/0378-1135(90)90144-k. Vet Microbiol. 1990. PMID: 2169670 Free PMC article. Review.
-
Expression of transcriptional units using transmissible gastroenteritis coronavirus derived minigenomes and full-length cDNA clones.Adv Exp Med Biol. 2001;494:447-51. doi: 10.1007/978-1-4615-1325-4_65. Adv Exp Med Biol. 2001. PMID: 11774506 Review. No abstract available.
Cited by
-
Biochemical aspects of coronavirus replication.Adv Exp Med Biol. 2006;581:13-24. doi: 10.1007/978-0-387-33012-9_2. Adv Exp Med Biol. 2006. PMID: 17037498 Free PMC article. Review. No abstract available.
-
The nucleoprotein is required for efficient coronavirus genome replication.J Virol. 2004 Nov;78(22):12683-8. doi: 10.1128/JVI.78.22.12683-12688.2004. J Virol. 2004. PMID: 15507657 Free PMC article.
-
Generation of a replication-competent, propagation-deficient virus vector based on the transmissible gastroenteritis coronavirus genome.J Virol. 2002 Nov;76(22):11518-29. doi: 10.1128/jvi.76.22.11518-11529.2002. J Virol. 2002. PMID: 12388713 Free PMC article.
-
Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis.Genome Res. 2019 Sep;29(9):1545-1554. doi: 10.1101/gr.247064.118. Epub 2019 Aug 22. Genome Res. 2019. PMID: 31439691 Free PMC article.
-
Engineering a live-attenuated porcine reproductive and respiratory syndrome virus vaccine to prevent RNA recombination by rewiring transcriptional regulatory sequences.mBio. 2025 Feb 5;16(2):e0235024. doi: 10.1128/mbio.02350-24. Epub 2024 Dec 23. mBio. 2025. PMID: 39714179 Free PMC article.
References
-
- Alonso, S., I. Sola, H. Wege, J. Teifke, M. Balach, J. Plana-Durán, and L. Enjuanes. Heterologous gene expression in tissue culture and in vivo using a transmissible gastroenteritis coronavirus helper dependent system. J. Gen. Virol., in press.
-
- Bronstein, I., J. J. Fortin, J. C. Voyta, R.-R. Juo, B. Edwards, C. E. M. Olenses, N. Lijam, and L. J. Kricka. 1994. Chemiluminescent reporter gene assays: sensitive detection of the GUS and SEAP gene products. BioTechniques 17:172–177. - PubMed
-
- Enjuanes, L., D. Brian, D. Cavanagh, K. Holmes, M. M. C. Lai, H. Laude, P. Masters, P. Rottier, S. G. Siddell, W. J. M. Spaan, F. Taguchi, and P. Talbot. 2000. Coronaviridae, p.835–849. In M. H. V. van Regenmortel, C. M. Fauquet, D. H. L. Bishop, E. B. Carsten, M. K. Estes, S. M. Lemon, D. J. McGeoch, J. Maniloff, M. A. Mayo, C. R. Pringle, and R. B. Wickner (ed.), Virus taxonomy. Classification and nomenclature of viruses. Academic Press, Inc., New York, N.Y.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials