Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1975 Jul-Aug;8(4):494-503.
doi: 10.1021/ma60046a023.

Theory of the cooperative transition between two ordered conformations of poly(L-proline). I. Phenomenological theory

Theory of the cooperative transition between two ordered conformations of poly(L-proline). I. Phenomenological theory

S Tanaka et al. Macromolecules. 1975 Jul-Aug.

Abstract

The states of three residues are correlated in a nearest-neighbor Ising model matrix treatment of a one-dimensional phase transition, in which nucleation is assumed to differ at each end of a regular sequence (asymmetric nucleation). The correlation of the states of three residues requires a 4 X 4 matrix, which cannot be reduced in size because of the asymmetric nature of the nucleation. Also, because of the asymmetry, at least four independent parameters for a homopolymer (rather than the two usually encountered in the helix-coil transition), ant at least five for a specific-sequence copolymer, are required to describe the transition behavior. The most important current interest in such a treatment (for a homopolymer) is its applicability to the poly(L-proline) form I in equilibrium form II interconversion. The earlier treatment of Schwarz, using the nearest-neighbor Ising model (with correlation of only two residues), is identical with the above treatment, and requires only a 2 X 2 matrix which greatly simplifies numerical computations, which are presented in the next two papers of this series. However, the 4 X 4 matrix treatment is required in order to make the asymmetric nature of the nucleation explicit and physically understandable, for a homopolymer; for a specific-sequence copolymer, such as a protein, it is essential in order to show how the asymmetric nature of helix nucleation differs from one amino acid to another.

PubMed Disclaimer

Similar articles

Cited by

Publication types