Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2002 Jan;122(1-2):167-74.
doi: 10.1016/s0165-5728(01)00466-0.

Prolonged intrathecal release of soluble Fas following severe traumatic brain injury in humans

Affiliations

Prolonged intrathecal release of soluble Fas following severe traumatic brain injury in humans

Philipp M Lenzlinger et al. J Neuroimmunol. 2002 Jan.

Abstract

The mechanisms underlying cell death following traumatic brain injury (TBI) are not fully understood. Apoptosis is believed to be one mechanism contributing to a marked and prolonged neuronal cell loss following TBI. Recent data suggest a role for Fas (APO-1, CD95), a type I transmembrane receptor glycoprotein of the nerve growth factor/tumor necrosis factor superfamily, and its ligand (Fas ligand, FasL) in apoptotic events in the central nervous system. A truncated form of the Fas receptor, soluble Fas (sFas) may indicate activation of the Fas/FasL system and act as a negative feedback mechanism, thereby inhibiting Fas mediated apoptosis. Soluble Fas was measured in cerebrospinal fluid (CSF) and serum of 10 patients with severe TBI (GCS< or =8) for up to 15 days post-trauma. No sFas was detected in CSF samples from patients without neurological pathologies. Conversely, after TBI 118 out of 120 CSF samples showed elevated sFas concentrations ranging from 56 to 4327 mU/ml. Paired serum samples showed above normal (8.5 U/ml) sFas concentrations in 5 of 10 patients. Serum levels of sFas were always higher than CSF levels. However, there was no correlation between concentrations measured in CSF and in serum (r(2)=0.078, p=0.02), suggesting that the concentrations in the two compartments are independently regulated. Also, no correlation was found between sFas in CSF and blood brain barrier (BBB) dysfunction as assessed by the albumin CSF/serum quotient (Q(A)), and concentrations of the cytotoxic cytokine tumor necrosis factor-alpha in CSF, respectively. Furthermore, there was no correlation with two markers of immune activation (soluble interleukin-2 receptor and neopterin) in CSF. Maximal CSF levels of sFas correlated significantly (r(2)=0.8191, p<0.001) with the early peaks of neuron-specific enolase in CSF (a marker for neuronal cell destruction), indicating that activation of the Fas mediated pathway of apoptosis may be in part the direct result of the initial trauma. However, the prolonged elevation of sFas in CSF may be caused by the ongoing inflammatory response to trauma and delayed apoptotic cell death.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources