Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2001;6(5):289-95.
doi: 10.1179/135100001101536427.

Regulatory roles of thioredoxin in oxidative stress-induced cellular responses

Affiliations
Free article
Review

Regulatory roles of thioredoxin in oxidative stress-induced cellular responses

Y Nishinaka et al. Redox Rep. 2001.
Free article

Abstract

Thioredoxin (TRX) is a small ubiquitous and multifunctional protein having a redox-active dithiol/disulfide within the conserved active site sequence -Cys-Gly-Pro-Cys-. TRX is induced by a variety of oxidative stimuli, including UV irradiation, inflammatory cytokines and chemical carcinogens, and has been shown to play crucial roles in the regulation of cellular responses such as gene expression, cell proliferation and apoptosis. Overexpression of TRX protects cells from cytotoxicity elicited by oxidative stress in both in vitro and in vivo models. The regulatory mechanism of TRX expression and activity is also being elucidated. Recently, TRX binding protein-2 (TBP-2)/vitamin D3 up-regulated protein 1 (VDUP1) was identified as a negative regulator of TRX. The analysis of TRX promoter region has revealed putative regulatory elements responsible for oxidative stress. Thus, the modulation of TRX functions may be a new therapeutic strategy for the treatment of oxidative stress-mediated diseases.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources